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Exact dark soliton solutions for a family of N coupled nonlinear Schrödinger equations
in optical fiber media
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We consider a family ofN coupled nonlinear Schro¨dinger equations which govern the simultaneous propa-
gation ofN fields in the normal dispersion regime of an optical fiber with various important physical effects.
The linear eigenvalue problem associated with the integrable form of all the equations is constructed with the
help of the Ablowitz-Kaup-Newell-Segur method. Using the Hirota bilinear method, exact dark soliton solu-
tions are explicitly derived.
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I. INTRODUCTION

Hasegawa and Tappert@1,2#, theoretically predicted the
possibility of propagation of envelope solitons in optical
bers and it was experimentally demonstrated by Mollena
et al. @3# in 1980. Since then, numerous interesting resea
results, both theoretical and experimental have been repo
in the field of optical solitons, as they are very useful in hi
speed digital optical fiber communication. In the absence
optical losses, the wave dynamics of nonlinear pulse pro
gation in a monomode fiber is described by the famous n
linear Schro¨dinger ~NLS! equation@4,5# given by

iqz2
k9

2
qtt1buqu2q50, ~1!

whereq represents the complex envelope amplitude,t andz
are the time and distance along the direction of propagat
k9 is the second derivative of the axial wave numberk with
respect to the angular frequencyv0 and describes group ve
locity dispersion, andb5n2v0 /cAeff is the self-phase-
modulation parameter, withn2 the Kerr coefficient,c the
speed of light, andAeff the effective core area of the fiber.

The possibility of bright~dark! solitons in optical fibers is
due to exact counterbalancing between the effects of ano
lous ~normal! group velocity dispersion and self-pha
modulation@1–6#. Dark solitons are generally considered
be less desirable for applications in high speed commun
tion systems because of their higher average power and
sulting undesirable effects, such as excitation of stimula
Brillouin backscattering. On the other hand, bright solito
have the drawback of fully utilizing the line capacity becau
of the necessity of keeping relatively large separations
tween pulses to avoid accumulation of bit errors. Also, op
cal losses decrease the intensity of the pulse, along wi
corresponding increase in the width. This effect is smalle
the dark optical soliton case. It was shown both numerica
and analytically that the time jitter in a dark soliton is low
than in the corresponding bright soliton@7,8#. The interactive
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force between two dark solitons is always repulsive, unl
the bright soliton case, and decreases twice as fast as a
tion of the distance between the solitons. The separation
creases monotonically rather than periodically as in the c
of bright solitons.

For handling more channels it is necessary to propag
more than one field simultaneously. Transmission of ma
fields simultaneously in a fiber is called wavelength divisi
multiplexing ~WDM! ~i.e., fields with slightly different fre-
quencies!. In 1974, Manakov@9# derived the coupled NLS
~CNLS! equations from the NLS equation by considering t
total field to be comprised of two fields~left and right polar-
izations!. In the same work he presented the linear eig
value problem associated with the CNLS equations and
soliton solutions using the inverse scattering transform~IST!.
A Painlevéanalysis of the CNLS equations was carried o
by Sahadevanet al. @10#. Bright and dark soliton solutions
using the Hirota bilinear method for the CNLS equatio
were presented by Radhakrishnan and Lakshmanan@11#. In
@12# we generated bright soliton solutions using the Ba¨ck-
lund transformation method. Very recently we construc
bright soliton solutions for the simultaneous propagation
N nonlinear waves in the anomalous dispersion regime@13#.

When we consider the simultaneous propagation ofN
nonlinear waves in the normal dispersion regime of a fi
(k95b), the wave dynamics of the system will be govern
by N CNLS equations of the form

qjz5 i F2
1

2
qjtt1S (

n51

N

uqnu2D qj G , j 51,2, . . . ,N. ~2!

For two field propagation~i.e., j 52) in optical fibers the
scaling factor between the cross-phase modulation and
self-phase modulation is 2/3,2, and between 2/3 and 2,
responding to the propagation of linearly, circularly, and
liptically polarized eigenmodes respectively, in each mo
@14,15#. Here this ratio is equated to unity, which corr
sponds to to the case of elliptical bifringence@14#. In the case
of many field propagation for WDM, the cross-coupling rat
between cross-phase modulation and self-phase modula
©2001 The American Physical Society11-1
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is 2 @4,5#. But the results of the present analysis might
useful for the perturbational analysis of related problems

Later, it was found that the propagation of high bit ra
soliton pulses is greatly influenced by higher order effe
also @4,5#. Physically important higher order effects a
higher order dispersion, self-steepening, stimulated inela
scattering, and delayed nonlinear response. With the effe
all these physical processes, the wave dynamics of the o
cal fiber system is governed by a higher order NLS~HNLS!
equation of the form@4,5#

iqz2
k9

2
qtt1buqu2q2

ik-
6

qttt1 ig~ uqu2q! t1 igs~ uqu2! tq50,

~3!

wherek-5]3k/]v3 at v0 describes higher order dispersio
g52b/v0 describes Kerr dispersion~also called self-
steepening!, andgs represents the delayed nonlinear proce
The imaginary part ofgs describes stimulated Raman sca
tering. We consider only the real part ofgs . Although here
we have considered only the real part, one can use the re
of the analysis presented in this work as a starting point
perturbational analysis of the system equation that inclu
the stimulated Raman scattering term~imaginary part! also.

Kodama@16# has shown that with suitable transformatio
and omitting the higher order terms the HNLS equation~3!
can be reduced to the Hirota equation@17#

iqz2
k9

2
qtt1buqu2q2

ik-
6

qttt1 iguqu2qt50. ~4!

The Hirota equation was first considered by Hirota himsel
@17# for the integrability conditionk9g5bk- and he derived
the bright soliton solution for the anomalous dispersion
gime k952b. Through Painleve´ analysis the integrability
conditionk9g5bk- was derived by Sakovich@18#. This in-
tegrability condition is valid for both normal and anomalo
dispersion regimes. For the normal dispersion regime w
we considerk95b, the integrable form ofN coupled Hirota
(N CH! equations takes the form

qjz5 i F2
1

2
qjtt1S (

n51

N

uqnu2D qj G1qjttt23S (
n51

N

uqnu2D qjt

23S (
n51

N

qn* qntD qj , j 51,2, . . . ,N. ~5!

The case of two coupled Hirota equations was first con
ered by Tasgal and Potasek@19#. They constructed the Lax
pair and obtained the bright soliton solutions using the IS
Radhakrishnanet al. @20# performed a Painleve´ analysis and
generated bright and dark soliton solutions for the coup
Hirota equations using the bilinear transformation meth
Using the Ba¨cklund transformation method we generated
bright soliton solutions for the same case@12#; and also the
bright soliton solutions for theN CH equations@13#. Here, in
Eq. ~5!, one can see that there are specific constraints
tween the coefficients of the higher order nonlinear term
Hence the analysis on Eq.~5! may not be useful directly for
04661
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physical problems. But the analysis might be useful, to h
as a starting point in terms of perturbational analysis
related nonlinear fiber optical problems.

Painlevéanalysis of the HNLS equation~3! has been car-
ried out many times@21,22,18#. Through Painleve´ analysis,
the conditions needing to be satisfied for the integrability
Eq. ~3! with all the higher order terms have been reported
@18#

k9g5bk- and g522gs . ~6!

These conditions are valid for both normal and anomal
dispersion regimes of the fiber system. In the fiber syst
Eq. ~3!, if k9 and b are of opposite sign, then the equatio
governs the pulse propagation in the anomalous disper
regime where the bright soliton exists. Without loss of ge
erality if we considerk952b for bright soliton propagation,
then the integrability conditions~6! becomeg522gs5
2k-, and with transformations variables of

q5u expH iF k9

k-
T2

k93

k-3
ZG J ,

~7!

Z5
2k-

6
z, T5t2

k92

2k-
z,

Eq. ~3! reduces to the following system of complex modifie
equation of Korteweg–de vries~KdV! type:

uZ1uTTT16uuu2uT13u~ uuu2!T50. ~8!

Sasa and Satsuma were the first to report the inverse sca
ing transform scheme for Eq.~8! @23#. Soliton solutions us-
ing Bäcklund transformation and the Hirota bilinear meth
are presented in@22#. For pulse propagation in the norma
dispersion regime of the fiber system Eq.~3!, k9 and b
should be of identical sign, which is the condition for da
solitons. For dark soliton propagation if we considerk95b,
then the integrability conditions~6! becomeg522gs5k-,
and with the transformation of variables~7!, Eq. ~3! reduces
to a different complex modified KdV equation:

uZ2uTTT16uuu2uT13u~ uuu2!T50. ~9!

Palacioset al., derived the dark soliton solution for th
HNLS equation using the coupled amplitude-phase formu
tion @24#. When we consider the simultaneous propagation
N nonlinear waves in the fiber system with higher order
fects, the HNLS equation~3! can be written in the form ofN
coupled HNLS (N CHNLS! equations as
1-2
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iq jz2
k9

2
qjtt1b (

n51

N

uqnu2qj2
ik-
6

qjttt1 igS (
n51

N

uqnu2qj D
t

1 igsS (
n51

N

uqnu2D
t

qj50, j 51,2, . . . ,N. ~10!

Two coupled forms of Eq.~10! have been considered in@25#.
In that work the exact form of the bright and dark solito
solutions was derived using the Hirota bilinear method. V
recently, Painleve´ analysis of two coupled HNLS equation
was reported in@26#. We considered the integrable form o
two and three coupled version of Eq.~10! and constructed
the Lax pair and derived the bright soliton solutions us
the Bäcklund transformation@27#. The IST scheme forN
coupled HNLS equations is reported in@28#. Recently we
derived the bright soliton solutions for the integrable form
Eqs.~10! using the Ba¨cklund transformation@13#.

In this paper, we consider theN CNLS equations~2!, N
CH equations~5!, andN CHNLS equations~10!, which gov-
ern simultaneous propagation ofN fields in the normal dis-
persion regime of an optical fiber with various importa
physical effects. We construct the eigenvalue problem a
ciated with all these equations with the help of the Ablowi
Kaup-Newell-Segur~AKNS! method@29#. Using the Hirota
bilinear method, we derive the exact dark one-soliton so
tions.

II. N CNLS EQUATIONS

In this section we consider theN CNLS equations~2!.
The linear eigenvalue problem associated with Eq.~2! is de-
rived using the AKNS method as

]C

]t
5U1C,

~11!

C5~c1c2c3•••cN11!T,

where

U15S z iq1 iq2 ••• iqN

2 iq1* 2z 0 ••• 0

2 iq2* 0 2z ••• 0

A A A � A

2 iqN* 0 0 ••• 2z

D , ~12!

and z is the spectral parameter. The space evolution of
the eigenfunctionC is given by
04661
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]C

]z
5V1C,

V15 i z2S 21 0 0 ••• 0

0 1 0 ••• 0

0 0 1 ••• 0

A A A � A

0 0 0 ••• 1

D
1zS 0 q1 q2 ••• qN

2q1* 0 0 ••• 0

2q2* 0 0 ••• 0

A A A � A

2qN* 0 0 ••• 0

D ~13!

1
i

2 S A 2 iq1t 2 iq2t ••• 2 iqNt

2 iq1t* 2uq1u2 2q2q1* ••• 2qNq1*

2 iq2t* 2q1q2* 2uq2u2 ••• 2qNq2*

A A A � A

2 iqNt* 2q1qN* 2q2qN* ••• 2uqNu2
D ,

~14!

whereA5(n51
N uqnu2. Equation~2! can be obtained from the

compatibility conditionU1z2V1t1@U1 ,V1#50.
In order to construct dark soliton solutions using the H

rota method, we apply the following form of bilinear tran
formation to Eq.~2!:

qj5
gj~z,t !

f ~z,t !
, ~15!

wheregj (z,t) are complex functions with respect toz and t.
Using Eq.~15!, Eq. ~2! can be decoupled into

~ iD z2Dt
2/22l1/2!~gj f !50, ~16a!

~Dt
21l1! f f 522(

n51

N

ugnu2, ~16b!

in which l1 is a constant to be determined. To obtain t
dark soliton solutions, we assume

gj5gj 0~11eg1 j !, f 511e f 1 . ~17!

Substituting Eq.~17! in Eq. ~16! and then collecting the co
efficients ofe (0), we get

gj 05t1 j exp~ ic1!, ~18!

where

c15k1t2~l12k1
2!z/21c1

(0) , ~19!
1-3
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and(n51
N ut1nu252l1/2, in whichk1 andc1

(0) are real con-
stants and thet1 j ’s are complex constants. Then from th
coefficients ofe (1) ande (2) we derive the solutions

gj52 f 152exp@m1~ t1k1z!1j1
(0)#, ~20!

wherem1
2522l154(n51

N ut1nu2 andj1
(0) is a real constant

Now using the solutions ofg1 j , f 1, andl1 in Eq. ~17! and
then in Eq.~15!, the dark soliton solutions of Eq.~2! can be
derived as

qj52t1 jexp~ ic1!tanh@m1~ t1k1z!1j1
(0)#. ~21!

III. N CH EQUATIONS

Let us consider theN CH equations~5!. The linear eigen-
value problem associated with Eq.~5! is derived using the
AKNS method as
04661
]C

]t
5U2C,

~22!

C5~c1c2c3•••cN11!T,

where

U25S z iq1 iq2 ••• iqN

2 iq1* 2z 0 ••• 0

2 iq2* 0 2z ••• 0

A A A � A

2 iqN* 0 0 ••• 2z

D . ~23!

The space evolution of the eigenfunctionC is given by
]C

]z
5V2C, ~24!

V25~24z31 i z2!S 21 0 0 ••• 0

0 1 0 ••• 0

0 0 1 ••• 0

A A A � A

0 0 0 ••• 1

D 1~4i z21z!1
0 q1 q2 ••• qN

2q1* 0 0 ••• 0

2q2* 0 0 ••• 0

A A A � A

2qN* 0 0 ••• 0
2 1S 22z1

i

2D

3S A 2 iq1t 2 iq2t ••• 2 iqNt

2 iq1t* 2uq1u2 2q2q1* ••• 2qNq1*

2 iq2t* 2q1q2* 2uq2u2 ••• 2qNq2*

A A A � A

2 iqNt* 2q1qN* 2q2qN* ••• 2uqNu2

D
2 iS 2 i (

n51

N

~qntqn* 2qnqnt* ! 2q1tt12Aq1 2q2tt12Aq2 ••• 2qNtt12AqN

q1tt* 22Aq1* i ~q1tq1* 2q1q1t* ! i ~q2tq1* 2q2q1t* ! ••• i ~qNtq1* 2qNq1t* !

q2tt* 22Aq2* i ~q1tq2* 2q1q2t* ! i ~q2tq2* 2q2q2t* ! ••• i ~qNtq2* 2qNq2t* !

A A A � A

qNtt* 22AqN* i ~q1tqN* 2q1qNt* ! i ~q2tqN* 2q2qNt* ! ••• i ~qNtqN* 2qNqNt* !

D , ~25!
1-4
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whereA5(n51
N uqnu2. Equation~5! can be obtained from the

compatibility conditionU2z2V2t1@U2 ,V2#50.
In order to construct dark soliton solutions using the H

rota method, we apply the same form of bilinear transform
tion ~15! on Eq.~5! to get

~ iD z2Dt
2/22 iD t

323il2Dt2l2/2!~gj f !50, ~26a!

~Dt
21l2! f f 522(

n51

N

ugnu2, ~26b!

in which l2 is a constant to be determined. To obtain t
dark soliton solutions, we assume

gj5gj 0~11eg1 j !, f 511e f 1 , ~27!

Substituting Eq.~27! in Eq. ~26! and then collecting the co
efficients ofe (0), we get

gj 05t2 j exp~ ic2!, ~28!

where

c25k2t2@~l22k2
2!/21k2~k2

223l2!#z1c2
(0) , ~29!

and(n51
N ut2nu252l2/2, in whichk2 andc2

(0) are real con-
stants and thet2 j ’s are complex constants. Then from th
coefficients ofe (1) ande (2) we derive the solutions

gj52 f 152exp$m2t2@~3k2
223l22k2!m22m2

3#z1j2
(0)%,
~30!

wherem2
2522l254(n51

N ut2nu2 andj2
(0) is a real constant

Now using the solutions ofg1 j , f 1, andl2 in Eq. ~27! and
then in Eq.~15!, the dark soliton solutions of Eq.~5! can be
derived as
04661
-
-

qj52t2 jexp~ ic2!tanh$m2t2@~3k2
223l22k2!m22m2

3#z

1j2
(0)%. ~31!

IV. N CHNLS EQUATIONS

In this section we construct the linear eigenvalue probl
using the AKNS method and derive the dark soliton so
tions using the Hirota bilinear method for theN CHNLS
equations~10!. For N field propagation in the normal dispe
sion regime we consider the integrability conditionsk95b
andg522gs5k- @26# and using the transformations

qj5uj expH iF k9

k-
T2

k93

k-3
ZG J ,Z5

2k-
6

z, T5t2
k92

2k-
z,

~32!

Equation~10! reduces toN coupled complex modified KdV
equations,

ujZ2ujTTT16(
n51

N

uunu2ujT13uj S (
n51

N

uunu2D
T

50.

~33!

The Lax pair for theN coupled complex modified KdV equa
tions ~33! is derived using the AKNS method as

]C

]T
5U3C,

]C

]Z
5V3C, C5~c1c2c3•••c2N11!T,

~34!
where

U351
z 0 ••• 0 0 0 0 iuN

0 z ••• 0 0 0 0 iuN*

A A � A A A A A

0 0 ••• z 0 0 0 iu2

0 0 ••• 0 z 0 0 iu2*

0 0 ••• 0 0 z 0 iu1

0 0 ••• 0 0 0 z iu1*

2 iuN* 2 iuN ••• 2 iu2* 2 iu2 2 iu1* 2 iu1 2z

2 , ~35!

V354z31
1 0 ••• 0 0 0 0 0

0 1 ••• 0 0 0 0 0

A A � A A A A A

0 0 ••• 1 0 0 0 0

0 0 ••• 0 1 0 0 0

0 0 ••• 0 0 1 0 0

0 0 ••• 0 0 0 1 0

0 0 ••• 0 0 0 0 21

2 14i z21
0 0 ••• 0 0 0 0 uN

0 0 ••• 0 0 0 0 uN*

A A � A A A A A

0 0 ••• 0 0 0 0 u2

0 0 ••• 0 0 0 0 u2*

0 0 ••• 0 0 0 0 u1

0 0 ••• 0 0 0 0 u1*

2uN* 2uN ••• 2u2* 2u2 2u1* 2u1 0

2

1-5
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22z1
uuNu2 uN

2
••• u2* uN u2uN u1* uN u1uN 2 iuNT

uN*
2 uuNu2

••• u2* uN* u2uN* u1* uN* u1uN* 2 iuNT*

A A � A A A A A

u2uN* u2uN ••• uu2u2 u2
2 u2u1* u2u1 2 iu2T

u2* uN* u2* uN ••• u2*
2 uu2u2 u2* u1* u2* u1 2 iu2T*

u1uN* u1uN ••• u1u2* u1u2 uu1u2 u1
2 2 iu1T

u1* uN* u1* uN ••• u1* u2* u1* u2 u1*
2 uu1u2 2 iu1T*

2 iuNT* 2 iuNT ••• 2 iu2T* 2 iu2T 2 iu1T* 2 iu1T 22B

2
11

uNT* uN2uN* uNT 0 ••• u2T* uN2u2* uNT u2TuN2u2uNT u1T* uN2u1* uNT u1TuN2u1uNT 24iBuN1 iuNTT

0 uN* uNT2uNT* uN ••• u2T* uN* 2u2* uNT* u2TuN* 2u2uNT* u1T* uN* 2u1* uNT* u1TuN* 2u1uNT* 24iBuN* 1 iuNTT*

A A � A A A A A

u2uNT* 2u2TuN* u2uNT2u2TuN ••• u2T* u22u2* u2T 0 u2u1T* 2u2Tu1* u2u1T2u2Tu1 24iBu21 iu2TT

u2* uNT* 2u2T* uN* u2* uNT2u2T* uN ••• 0 u2* u2T2u2T* u2 u2* u1T* 2u2T* u1* u2* u1T2u2T* u1 24iBu2* 1 iu2TT*

u1uNT* 2u1TuN* u1uNT2u1TuN ••• u1u2T* 2u1Tu2* u1u2T2u1Tu2 u1T* u12u1* u1T 0 24iBu11 iu1TT

u1* uNT* 2u1T* uN* u1* uNT2u1T* uN ••• u1* u2T* 2u1T* u2* u1* u2T2u1T* u2 0 u1* u1T2u1T* u1 24iBu1* 1 iu1TT*

4iBuN* 2 iuNTT* 4iBuN2 iuNTT ••• 4iBu2* 2 iu2TT* 4iBu22 iu2TT 4iBu1* 2 iu1TT* 4iBu12 iu1TT 0

2 ~36!
m

i
s-

as

d
ota

of
e

u-
n-

li-
us
rk,

ar

on
ree
n

n-
-

on-
es
al
in

e of
where B5(n51
N uunu2. Equation~33! can be obtained from

the compatibility conditionU3Z2V3T1@U3 ,V3#50. This
proves the complete integrability of Eq.~33! which in turn
proves the complete integrability of the HNLS fiber syste
for the simultaneous propagation ofN nonlinear fields in the
normal dispersion regime with the conditions~6!.

In order to construct dark soliton solutions using the H
rota method, we apply the following form of bilinear tran
formation to Eq.~33!:

uj5
gj~Z,T!

f ~Z,T!
, ~37!

wheregj (Z,T) are complex functions with respect toZ and
T. Using Eq.~37!, Eq. ~33! can be decoupled into

~ iD Z2DT
313l3DT!~gj f !50, ~38a!

~DT
22l3! f f 524(

n51

N

ugnu2, ~38b!

DT~gjgj 11!50 ~ j 51, . . . ,N21!, ~38c!

DT~gNg1!5DT~gjgj* !50. ~38d!

To obtain the dark soliton solutions, we assume

gj5t3 j~11eg1 j !, f 511e f 1 , ~39!

wheret3 j are complex constants andg1 j are complex func-
tions of Z and T. Substituting Eq.~39! into Eq. ~38! and
collecting the coefficients of different powers ofe, we derive
the solutions

gj52 f 152exp@m3~T2l3Z!1j3
(0)#, ~40!
04661
-

where l35m3
2/254(n51

N ut3nu2 and j3
(0) is a real constant.

Now, using the solutions ofg1 j , f 1, andl3 in Eq. ~39! and
then in Eq.~37!, the dark soliton solutions can be derived

uj5t3 jexp~6 ip!tanhH 1

2 Fm3S T2
m3

2

2
ZD 1j3

(0)G J .

~41!

V. DISCUSSION AND CONCLUSIONS

In @11,20# the dark soliton solutions for two couple
CNLS and CH equations were constructed using the Hir
bilinear method. Here, we have derived the same types
dark soliton solutions forN coupled equations. For th
HNLS case, in@25#, similar dark soliton solutions to Eq.~41!
were derived for two coupled HNLS equations. Those a
thors claimed that for a particular choice of parametric co
ditions there is the possibility of both dark and bright so
tons propagating in both the normal and anomalo
dispersion regimes of the optical fiber system. In that wo
to derive the soliton solutions from the Hirota biline
method the authors used only one condition,k9g5bk-.
Then with the freedom available with the parametergs , they
had the possibility of suggesting that both types of solit
can propagate in both types of dispersion regime. We ag
that their argument is correct from the availability of solito
solutions from the Hirota bilinear method with only one co
dition k9g5bk-. But from the complete integrability condi
tions ~6! both from Painleve´ analysis @26# and from the
above construction of the Lax pair, we find that another c
dition g522gs must also be satisfied. This condition mak
it clear that only a dark soliton will propagate in the norm
dispersion regime and only a bright soliton will propagate
the anomalous dispersion regime even in the presenc
higher order effects.

To conclude, we have considered theN CNLS,N CH, and
1-6
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N CHNLS equations which describe simultaneousN nonlin-
ear wave propagation in a fiber medium with importa
higher order effects. The linear eigenvalue problem ass
ated with the integrable form of theN CNLS, N CH, andN
CHNLS equations for the normal dispersion regime was c
structed using the AKNS method and the exact form of
dark soliton solutions was also derived using the Hirota
linear method. Finally, we have shown that only da
~bright! solitons will propagate in the normal~anomalous!
ev

, J

04661
t
i-

-
e
i-

dispersion regime of the fiber system even in the presenc
higher order effects.
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