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Exact dark soliton solutions for a family of N coupled nonlinear Schralinger equations
in optical fiber media
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We consider a family oN coupled nonlinear Schdinger equations which govern the simultaneous propa-
gation ofN fields in the normal dispersion regime of an optical fiber with various important physical effects.
The linear eigenvalue problem associated with the integrable form of all the equations is constructed with the
help of the Ablowitz-Kaup-Newell-Segur method. Using the Hirota bilinear method, exact dark soliton solu-
tions are explicitly derived.
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I. INTRODUCTION force between two dark solitons is always repulsive, unlike
the bright soliton case, and decreases twice as fast as a func-
Hasegawa and Tapp€lt,2], theoretically predicted the tion of the distance between the solitons. The separation in-
possibility of propagation of envelope solitons in optical fi- creases monotonically rather than periodically as in the case
bers and it was experimentally demonstrated by Mollenaueof bright solitons.
et al. [3] in 1980. Since then, numerous interesting research For handling more channels it is necessary to propagate
results, both theoretical and experimental have been reportedore than one field simultaneously. Transmission of many
in the field of optical solitons, as they are very useful in highfields simultaneously in a fiber is called wavelength division
speed digital optical fiber communication. In the absence ofnultiplexing (WDM) (i.e., fields with slightly different fre-
optical losses, the wave dynamics of nonlinear pulse propajuencies In 1974, Manako\9] derived the coupled NLS
gation in a monomode fiber is described by the famous nontCNLS) equations from the NLS equation by considering the
linear Schradinger (NLS) equation[4,5] given by total field to be comprised of two fieldgeft and right polar-
izationg. In the same work he presented the linear eigen-
) 2 value problem associated with the CNLS equations and the
19~ > gt Blal*q=0, (1) soliton solutions using the inverse scattering transfas).
A Painleveanalysis of the CNLS equations was carried out

whereq represents the complex envelope amplitudand z by Sahadevart al. [10]. Bright and dark soliton solutions
are the time and distance along the direction of propagatiorising the Hirota bilinear method for the CNLS equations
k” is the second derivative of the axial wave numkavith ~ Were presented by Radhakrishnan and Lakshmébah In
respect to the angular frequeney and describes group ve- [12] we generated bright soliton solutions using theciBa
locity dispersion, andB=n,wo/CA is the self-phase- lund transformation method. Very recently we constructed
modulation parameter, with, the Kerr coefficientc the  bright soliton solutions for the simultaneous propagation of
speed of light, and\ the effective core area of the fiber. N nonlinear waves in the anomalous dispersion redih@.
The possibility of brigh{dark) solitons in optical fiersis ~ When we consider the simultaneous propagationNof
due to exact counterbalancing between the effects of anom&onlinear waves in the normal dispersion regime of a fiber
lous (norma) group velocity dispersion and self-phase (k"= ), the wave dynamics of the system will be governed
modulation[1—6]. Dark solitons are generally considered to Py N CNLS equations of the form
be less desirable for applications in high speed communica-
tion systems because of their higher average power and re-
sulting undesirable effects, such as excitation of stimulated
Brillouin backscattering. On the other hand, bright solitons
have the drawback of fully utilizing the line capacity because
of the necessity of keeping relatively large separations be- ] o ) ) i
tween pulses to avoid accumulation of bit errors. Also, opti-For two field propagatiorti.e., j=2) in optical fibers the
cal losses decrease the intensity of the pulse, along with 8c@ling factor between the cross-phase modulation and the
corresponding increase in the width. This effect is smaller irs€lf-phase modulation is 2/3,2, and between 2/3 and 2, cor-
the dark optical soliton case. It was shown both numerically€sponding to the propagation of linearly, circularly, and el-
and analytically that the time jitter in a dark soliton is lower liptically polarized eigenmodes respectively, in each model

than in the corresponding bright solitpn 8. The interactive [14,15. Here this ratio is equated to unity, which corre-
sponds to to the case of elliptical bifringerid&l]. In the case

_ of many field propagation for WDM, the cross-coupling ratio
*Email address: naks@jupiter.u-bourgogne.fr between cross-phase modulation and self-phase modulation
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is 2 [4,5]. But the results of the present analysis might bephysical problems. But the analysis might be useful, to help

useful for the perturbational analysis of related problems. as a starting point in terms of perturbational analysis for
Later, it was found that the propagation of high bit raterelated nonlinear fiber optical problems.

soliton pulses is greatly influenced by higher order effects Painleveanalysis of the HNLS equatiof8) has been car-

also [4,5]. Physically important higher order effects are ried out many time$21,22,1§. Through Painlevanalysis,

higher order dispersion, self-steepening, stimulated inelastithe conditions needing to be satisfied for the integrability of

scattering, and delayed nonlinear response. With the effect dq. (3) with all the higher order terms have been reported as

all these physical processes, the wave dynamics of the optjd8]

cal fiber system is governed by a higher order NHBILS)

equation of the fornj4,5] K" y= Bk d 2 (6)
r,y: m an v=—2%s.

”n NV

iq,— 7qn+BIQI2q— thtt+i7(|q|2q)t+i75(|q|2)tq:01

3) These conditions are valid for both normal and anomalous

dispersion regimes of the fiber system. In the fiber system

wherek” = 5%/ dw® at w, describes higher order dispersion, Ed- (3), if k" and 8 are of opposite sign, then the equation
y=2pBlw, describes Kerr dispersioalso called self- 9OVerns the pulse p_ropaga’qon in _the an_omalous dispersion
steepening andy, represents the delayed nonlinear process/€dime where the bl‘l%]ht soliton exists. Without loss of gen-
The imaginary part ofy, describes stimulated Raman scat- &rality if we considek” = — g for bright soliton propagation,
tering. We consider only the real part gf. Although here theg the integrability conditiong6) become y=—2y,=
we have considered only the real part, one can use the resultsK » and with transformations variables of
of the analysis presented in this work as a starting point for
perturbational analysis of the system equation that includes

the stimulated Raman scattering tefimaginary parx also. | K" K'3
Kodama[16] has shown that with suitable transformation q=uexp i WT_ —Z|,
and omitting the higher order terms the HNLS equatign 3
can be reduced to the Hirota equatidrY] (7)
- " A . _m "2
i,~ = Qut Blal®d— - dutivlal®a=0. (4 Z=——z T=t--——z
6 2k

The Hirota equation was first considered by Hirota himself in

[17] for the integrability conditiork” y= 8k™ and he derived £q (3) reduces to the following system of complex modified
the bright soliton solution for the anomalous dispersion réequation of Korteweg—de vrigkdV) type:

gime k"= — B. Through Painleveanalysis the integrability

conditionk” y= Bk was derived by SakovicHL8]. This in-

tegrability condition is valid for both normal and anomalous Uz+ Urrr+ 6|ul?ur+3u(|u|?)+=0. (8)
dispersion regimes. For the normal dispersion regime when

we considek” = B, the integrable form oN coupled Hirota ] )
(N CH) equations takes the form Sasa and Satsuma were the first to report the inverse scatter-

ing transform scheme for E@8) [23]. Soliton solutions us-

1 N N ing Backlund transformation and the Hirota bilinear method
Q=i =5t nz,l |0Inl? | ) |+ Cljeee —3 Z‘,l dnl? | Ot are presented if22]. For pulse propagation in the normal

dispersion regime of the fiber system E®), k" and 8
N should be of identical sign, which is the condition for dark
_3( 2 ¥ qm) 9;, j=12,...N. (5) solitons. For dark soliton propagation if we consi#iér= 3,
n=1 then the integrability condition&) becomey= —2y,=k",
and with the transformation of variablé€s), Eq. (3) reduces

The case of two coupled Hirota equations was first considf0 a different complex modified KdV equation:

ered by Tasgal and Potasgl9]. They constructed the Lax
pair and obtained the bright soliton solutions using the IST.

Radhakrishnaset al.[20] performed a Painlevanalysis and Uz — U+ 6|ul?ur+3u(|ul?)+=0. (9)
generated bright and dark soliton solutions for the coupled

Hirota equations using the bilinear transformation method.

Using the Baklund transformation method we generated thePalacioset al, derived the dark soliton solution for the
bright soliton solutions for the same cd4e?]; and also the HNLS equation using the coupled amplitude-phase formula-
bright soliton solutions for th& CH equation$13]. Here, in  tion [24]. When we consider the simultaneous propagation of
Eqg. (5), one can see that there are specific constraints beN nonlinear waves in the fiber system with higher order ef-
tween the coefficients of the higher order nonlinear termsfects, the HNLS equatio(B8) can be written in the form of
Hence the analysis on E¢p) may not be useful directly for coupled HNLS N CHNLS) equations as
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Two coupled forms of Eq10) have been considered ig5].

In that work the exact form of the bright and dark soliton 6 00 - 1
solutions was derived using the Hirota bilinear method. Very 0

recently, Painlevanalysis of two coupled HNLS equations i G2 - On
was reported if26]. We considered the integrable form of -gqg; 0 O

two and three coupled version of EL0) and constructed
the Lax pair and derived the bright soliton solutions using +¢
the Baklund transformatiof27]. The IST scheme folN

-q; 0 O (13

coupled HNLS equations is reported [i28]. Recently we -g5 0 0 --- 0
derived the bright soliton solutions for the integrable form of

Egs.(10) using the Baklund transformatiof13].

In this paper, we consider tH¢ CNLS equationg2), N A —iqQy  —igy -+ —iQnt
CH equationg5), andN CHNLS equation10), which gov- Cigt g2 -t B *
ern simultaneous propagation Nffields in the normal dis- - A1t i 90 - Ana1

persion regime of an optical fiber with various important +-| —igy -y —lan? - —anad

physical effects. We construct the eigenvalue problem asso-

ciated with all these equations with the help of the Ablowitz- )
Kaup-Newell-SegufAKNS) method[29]. Using the Hirota —igNe —aO%  —aqay oo —lanl?
bilinear method, we derive the exact dark one-soliton solu- (14

tions.

II. N CNLS EQUATIONS

whereA=3N_,|q,|2. Equation(2) can be obtained from the
compatibility conditionU ,,—V;+[U4,V,]=0.

In order to construct dark soliton solutions using the Hi-
rota method, we apply the following form of bilinear trans-

In this section we consider thd CNLS equationy2). formation to Eq.(2):
The linear eigenvalue problem associated with @yis de-

rived using the AKNS method as

V= (Yrihoths - nr)

where

{ gy igx --- gy
U1= _qu 0 -7 - 0

_g](zvt)
LRTPOR 19

whereg;(z,t) are complex functions with respect z@andt.
Using Eq.(15), Eq. (2) can be decoupled into

11
(iD,—DZ/2—\4/2)(g;f)=0, (163
N
(Df+A)ff=—22 |gil?, (16b)

in which N1 is a constant to be determined. To obtain the
dark soliton solutions, we assume

gj=0jo(1+e€gyj), f=1+€f;. (17)

(12 Substituting Eq(17) in Eq. (16) and then collecting the co-
efficients ofe®), we get

gjo= T1j EXPi ), (18)

where

and ¢ is the spectral parameter. The space evolution of the

the eigenfunction?’ is given by

= r1t— (N — kD zl2+ 2, (19
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and=N_,|71,/2=—\4/2, in which x; and ¢{* are real con- o
stants and therlf-’s are complex constants. Then from the 7=U2‘1’.
coefficients ofe™) and €/?) we derive the solutions (22)
— T
g=—fi=—exgmy(t+x2)+ &%, (20 V=hdads i)
wherem?=—2\,=43N_.|7,,|? and & is a real constant. Where
Now using the solutions of;,f;, and\, in Eq. (17) and
then in Eq.(15), the dark soliton solutions of Eq2) can be { iq, id, i
derived as -
—ig¥ -¢ 0 - 0
;= — mjexplig)tanimy(t+xy2) + €91 (2D U,= —ig; 0 —¢ 0 23)
lll. N CH EQUATIONS —igk 0 0 —7

Let us consider th&l CH equationg5). The linear eigen-
value problem associated with E(p) is derived using the

AKNS method as The space evolution of the eigenfunctighis given by

'N—v«lf 24
=7 - V¥, (29
0 d: 02 an
-1 0 o --- O
_q’J\: 0 0 e O
0 1.0 --- 0
Vo=(—423+ig» 0 0 1 .-+ 0| +(4if%+9) + —2g+§)
—gq% 0 0 --- 0
0 00 1 AN
A =iyt — 10yt — it
=g, —lol® -0} —qnaT
x| —igy —o05  —|a,l? — O3
—igf, —may  — 920N —|an|?
N
—in§=)l (Ondf —OnGF)  — Ot 2Ad;  — Ot 2Ad, — Ot 2A0y
B Oin—2Ad] H(0107 — 093 (0297 — 9207 JCNCHENCHY) 5
i(uds —d103) (0295 — 9205, i(Onds —anasy) |

Ao — 2A03

AN — 2A0N i(92:aN — 910%)

1(02:9% — 920
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WhereAz_.E,’Lllanz_. Equation(5) can be obtained from the 0;= — moexi ¢2)tanr{m2t_[(3,<§_3)\2_ Kp)My— mg]z
compatibility conditionU,,—V,+[U,,V,]=0. ©)
In order to construct dark soliton solutions using the Hi- +& ) (31)
rota method, we apply the same form of bilinear transforma-
tion (15) on Eq.(5) to get
IV. N CHNLS EQUATIONS
‘N _N2/9_ N3_ _ Y —
(iD,—D{/2=iD{—=3iN,D—\2/2)(g;f)=0, (263 In this section we construct the linear eigenvalue problem
N using the AKNS method and derive the dark soliton solu-
D24\, ) ff=—2 2 26b) tions using the H|ro'§a bilinear m_ethqd for thé CHN_LS
(Di+dz) nzl 19n (26 equationg10). For N field propagation in the normal disper-

. _ _ _ . sion regime we consider the integrability conditickis= 3
in which X is a constant to be determined. To obtain theand y=—2y,=k” [26] and using the transformations

dark soliton solutions, we assume

gj:9j0(1+591j)v f:1+6f1, (27) K" k”3 —K" k//2
_ ) . gi=ujexpy i| —T——2Z|,Z=—F2, T=t——-z2
Substituting Eq(27) in Eq. (26) and then collecting the co- k" K3 6 2k"
efficients ofe'™’, we get (32)
gjo= 725 EXPi 1), (28)

Equation(10) reduces td\ coupled complex modified KdV
where equations,

Pa= kot —[(No— k3)12+ k(K5 —3Np) ]2+ ¢, (29) N

andX=N_ | 75n/2= —\,/2, in which «, and 4% are real con- Ujz = Ujrrr+ anzl |Unl?ujr+ 3y,
stants and ther;’s are complex constants. Then from the
coefficients ofe!) and €(?) we derive the solutions

N
E |un|2) =0.
n=1
.
(33
gj=—f1=—exp{myt—[(3k53— 3\, — k) My—m3]z+ &5}, The Lax pair for theN coupled complex modified KdV equa-
(30)  tions(33) is derived using the AKNS method as

wheremz=—2\,=43N_,|7,,|? and &) is a real constant. v
Now using the solutions of;;,f;, and\, in Eq. (27) and W _ o _ T
then in Eq.(15), the dark soliton solutions of E&) can be ot ~ YV 57 =Vel V=i Yan+) s

derived as (39
where _
4 0 0 0 0 0 iuy
0 ¢ 0 0 0 0 iuf
0 0 Z 0 0 0 iu,
Us=| o 0 0 ¢ 0 0 iuj |’ (39
0 0 0 0 ¢ 0 iuy
0 0 0 0 0 ¢ iut
—iuy  —iuy —iu}  —iu, —iu} —iuy —¢
0 0 0 O 0 0 N
0 1 0 0 0 0 O 0 0 0 0 0 0 uf
Jo o 10 0 0 O o 0 0 0 0 0 u
= +
Vs=4&l o o100 of ™ o o o o o o u
0 0 00 1 0 O 0 0 0 o 0 0 u
0 0 0 0 0 1 0 0 0 0 0 0 0o u
0 0 0 0 0 0 -1 —uf —uy - —U% —u, —uf —u; 0
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(36)

whereB=30_,|u,|?. Equation(33) can be obtained from
the compatibility conditionUs;,—Var+[U3,V3]=0. This
proves the complete integrability of E33) which in turn
proves the complete integrability of the HNLS fiber system
for the simultaneous propagation Mfnonlinear fields in the
normal dispersion regime with the conditiof®.

In order to construct dark soliton solutions using the Hi-
rota method, we apply the following form of bilinear trans-
formation to Eq.(33):

NRNTPATE 37

whereg;(Z,T) are complex functions with respect Zoand
T. Using Eq.(37), Eq. (33) can be decoupled into

(iDz—D3+3\3D7)(g;F) =0, (383
N

(D-Ag)ff=—-42, |g;|? (38b)

Dr(gng1) =D+(g;g} ) =0. (380

To obtain the dark soliton solutions, we assume

gj:7'3j(1+€glj), f:1+6f1, (39)

where 75; are complex constants aigd; are complex func-
tions of Z and T. Substituting Eq.(39) into Eq. (38) and

collecting the coefficients of different powers @fwe derive
the solutions

9= —f1= —exgmy(T—X32) + €], (40

where A\3=m3/2=43N_,| 75,2 and £ is a real constant.
Now, using the solutions of,;,f;, and\; in Eq. (39) and
then in Eq.(37), the dark soliton solutions can be derived as

|

2] e

. 1 m3
Uj=rgjexp(£im)tan 5| Ms T——=Z

(41)

V. DISCUSSION AND CONCLUSIONS

In [11,20 the dark soliton solutions for two coupled
CNLS and CH equations were constructed using the Hirota
bilinear method. Here, we have derived the same types of
dark soliton solutions forN coupled equations. For the
HNLS case, iff25], similar dark soliton solutions to E¢41)
were derived for two coupled HNLS equations. Those au-
thors claimed that for a particular choice of parametric con-
ditions there is the possibility of both dark and bright soli-
tons propagating in both the normal and anomalous
dispersion regimes of the optical fiber system. In that work,
to derive the soliton solutions from the Hirota bilinear
method the authors used only one conditiétiy= BK”.
Then with the freedom available with the parameggy they
had the possibility of suggesting that both types of soliton
can propagate in both types of dispersion regime. We agree
that their argument is correct from the availability of soliton
solutions from the Hirota bilinear method with only one con-
dition k" y= Bk". But from the complete integrability condi-
tions (6) both from Painleveanalysis[26] and from the
above construction of the Lax pair, we find that another con-
dition y= — 2y, must also be satisfied. This condition makes
it clear that only a dark soliton will propagate in the normal
dispersion regime and only a bright soliton will propagate in
the anomalous dispersion regime even in the presence of
higher order effects.

To conclude, we have considered tie€€NLS,N CH, and
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N CHNLS equations which describe simultanedusonlin-  dispersion regime of the fiber system even in the presence of
ear wave propagation in a fiber medium with importanthigher order effects.

higher order effects. The linear eigenvalue problem associ-
ated with the integrable form of thd CNLS, N CH, andN
CHNLS equations for the normal dispersion regime was con-
structed using the AKNS method and the exact form of the The author wishes to thank the Center National de la Re-
dark soliton solutions was also derived using the Hirota bi-<cherche ScientifiquéCNRS for financial support. The au-
linear method. Finally, we have shown that only darkthor is also very grateful to P. Tchofo Dinda, G. Millot, S.
(bright) solitons will propagate in the norm&nomalous  Wabnitz, and A. B. Moubissi for many kinds of help.
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